Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae
نویسندگان
چکیده
The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Delta, izh2Delta, plb2Delta, ylr413wDelta and yor012wDelta) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies.
منابع مشابه
Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.
Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO(2)-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aero...
متن کاملGenome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae.
The yeast Saccharomyces cerevisiae is unique among eukaryotes in exhibiting fast growth in both the presence and the complete absence of oxygen. Genome-wide transcriptional adaptation to aerobiosis and anaerobiosis was studied in assays using DNA microarrays. This technique was combined with chemostat cultivation, which allows controlled variation of a single growth parameter under defined cond...
متن کاملMolecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis.
Yeast xylose metabolism is generally considered to be restricted to respirative conditions because the two-step oxidoreductase reactions from xylose to xylulose impose an anaerobic redox imbalance. We have recently developed, however, a Saccharomyces cerevisiae strain that is at present the only known yeast capable of anaerobic growth on xylose alone. Using transcriptome analysis of aerobic che...
متن کاملStarvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h(-1) at pH 3.25 or 5. Lactic or benzoic acid was present in the g...
متن کاملRole of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.
In contrast to batch cultivation, chemostat cultivation allows the identification of carbon source responses without interference by carbon-catabolite repression, accumulation of toxic products, and differences in specific growth rate. This study focuses on the yeast Saccharomyces cerevisiae, grown in aerobic, carbon-limited chemostat cultures. Genome-wide transcript levels and in vivo fluxes w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 153 شماره
صفحات -
تاریخ انتشار 2007